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Almeida R, Barbosa J, Compte A. Neural circuit basis of visuo-
spatial working memory precision: a computational and behavioral
study. J Neurophysiol 114: 1806–1818, 2015. First published July 15,
2015; doi:10.1152/jn.00362.2015.—The amount of information that
can be retained in working memory (WM) is limited. Limitations of WM
capacity have been the subject of intense research, especially in trying to
specify algorithmic models for WM. Comparatively, neural circuit per-
spectives have barely been used to test WM limitations in behavioral
experiments. Here we used a neuronal microcircuit model for visuo-
spatial WM (vsWM) to investigate memory of several items. The model
assumes that there is a topographic organization of the circuit responsible
for spatial memory retention. This assumption leads to specific predic-
tions, which we tested in behavioral experiments. According to the
model, nearby locations should be recalled with a bias, as if the two
memory traces showed attraction or repulsion during the delay period
depending on distance. Another prediction is that the previously reported
loss of memory precision for an increasing number of memory items
(memory load) should vanish when the distances between items are
controlled for. Both predictions were confirmed experimentally. Taken
together, our findings provide support for a topographic neural circuit
organization of vsWM, they suggest that interference between similar
memories underlies some WM limitations, and they put forward a
circuit-based explanation that reconciles previous conflicting results on
the dependence of WM precision with load.

short-term memory; working memory; precision; capacity; attractor model

WORKING MEMORY (WM) refers to the ability to actively retain
stimulus information over a short period of time, and it is
thought to be a core component of cognitive functions (Bad-
deley 1986; Conway et al. 2003). A hallmark of WM is that the
information retained is limited. Currently, a significant effort is
being devoted to characterizing the nature of WM capacity
limitations, but their bases remain controversial (Luck and
Vogel 2013; Ma et al. 2014). Important points of discordance
have been whether or not the number of items in WM can be
increased at a cost in precision (Bays and Husain 2008; Zhang
and Luck 2008) and whether the similarity of the items to
memorize improves (Johnson et al. 2009; Lin and Luck 2009)
or degrades (Elmore et al. 2011) WM performance.

Recently, a neuronal circuit perspective is entering these
debates: Electrophysiological experiments have started to in-
vestigate the neural basis of multiple-item WM (Buschman et
al. 2011; Lara and Wallis 2014; Warden and Miller 2007), and
neural circuit modeling has been used to link cellular and
network mechanisms with behavior to understand WM capac-
ity limitations (Bays 2014; Edin et al. 2009; Macoveanu et al.

2006, 2007; Papadimitriou et al. 2015; Wei et al. 2012; Wim-
mer et al. 2014). Most of these models are variations of a
model (Compte et al. 2000) developed to be consistent with
neurophysiological data from behaving monkeys (Funahashi et
al. 1989). They rely on the assumption that there is a topo-
graphic structure in the circuits supporting visuo-spatial WM
(vsWM), which implements a continuous attractor mechanism
responsible for the retention of spatial memory. Some evidence
from fMRI (Kastner et al. 2007; Schluppeck et al. 2006) and
electrophysiology (Constantinidis et al. 2001; Inoue and Fu-
nahashi 2002) studies supports a coarse degree of spatial WM
maps in parietal and prefrontal cortex. Recently, neural evi-
dence for attractor dynamics on a fine vsWM spatial map in
prefrontal cortex has also been found (Wimmer et al. 2014).
However, additional implications of such a spatial memory
map for the relation between vsWM precision, capacity, and
stimulus similarity remain untested. We aimed here to advance
our understanding of the neuronal underpinnings of vsWM by
explicitly testing the assumption of a topographic structure of
the vsWM buffer. One implication of this structure is that the
efficiency with which different items are memorized should
depend on their relative locations, since stronger interference
of memory traces would be expected for nearby items. Using
simulations, we predicted an attractive bias when remembering
locations of two nearby items, for very short interitem dis-
tances. This prediction was validated in behavioral experi-
ments in humans. We then sought to address how these
interferences affected the relationship between memory load
and precision. In our model, the effect of load on memory
precision was largely accounted for by changes in interitem
distance with load. Behavioral data confirmed this prediction.
We finally tested in an additional experiment whether behav-
ioral data were better explained by memory attraction than by
memory swapping (Bays et al. 2009), and we also confirmed
that intermediate distances between memorized items were
characterized by a repulsive memory bias. The importance of
our work is threefold. First, we provide new experimental
evidence concerning interference in vsWM. Second, we test a
critical assumption of an important class of models of vsWM.
Third, we put forward a plausible explanation reconciling
previous results concerning the dependence of memory preci-
sion on load and concerning similarity effects on performance.

MATERIALS AND METHODS

Model

We used a previously proposed computational model (Compte et
al. 2000; Edin et al. 2009) to study the precision of vsWM of multiple
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items. The model (Compte et al. 2000) was originally developed to
account for a candidate neuronal mechanism for vsWM, namely, the
selective sustained elevated neuronal firing of the prefrontal cortical
neurons of monkeys performing a vsWM task (Funahashi et al. 1989).
The model consists of a network of interconnected excitatory and
inhibitory spiking neurons. The neurons encode the spatial location of
fixed-eccentricity visual stimuli in angle �. That is, they encode
positions (in angle) on a circle. Presentation of a stimulus at location
� is simulated by increasing the external input to the corresponding
excitatory neurons. The selective response of the neurons in the
network is maintained because of the structured connectivity of the
network. Excitatory neurons encoding for nearby angles have stronger
than average connections, which is essential for a selective group of
neurons to sustain elevated spiking after stimulus cessation (Compte
et al. 2000).

The parameter values used were as in the intraparietal sulcus (IPS)
circuit described in Edin et al. (2009), for a network capacity of two
items. The model had 1,024 excitatory and 256 inhibitory leaky
integrate-and-fire neurons (Tuckwell 1988). The neuronal selectivity
was imposed by external inputs, assumed to originate in upstream
areas of the dorsal pathway. Specifically, the presence of a visual
stimulus at an angle �stim was modeled by increasing the external
input to excitatory neurons with preferred direction around �stim. The
strength of the external input to a neuron encoding � decayed with the
distance to �stim according to Istim(�,�stim) � �exp(�[cos(2�/360(� �
�stim)) � 1]), where � � 0.025 nA and � � 39.

The integrate-and-fire neuron model describes how the membrane
voltage Vm integrates incoming inputs until a certain threshold value
Vth is reached and an action potential or spike is fired. After reaching
the threshold, Vm is reset to Vres for a refractory time period �ref before
continuing to integrate inputs. The equation describing the subthresh-
old changes in Vm is

Cm

dVm

dt
� �gL�Vm � EL� � Isyn � Iext

Each cell is then characterized by the total membrane capacitance Cm,
the total leak conductance gL, and the leak reversal potential EL and
by Vth, Vres, and �ref. For excitatory neurons the values used were
Cm � 0.5 nF, gL � 25 nS, EL � �70 mV, Vth � �50 mV, Vres �
�60 mV, �ref � 2 ms and for inhibitory neurons Cm � 0.2 nF, gL �
20 nS, EL � �70 mV, Vth � �50 mV, Vres � �60 mV, �ref � 1 ms.

The network of neurons was organized according to a ring struc-
ture: Excitatory and inhibitory neurons were spatially distributed on a
ring so that nearby neurons encoded nearby spatial locations. An
illustration of this structure is shown in Fig. 1A. Connections between
neurons were spatially tuned so that nearby neurons with similar
preferred directions had stronger than average connections, while
distant neurons had weaker connections. The distance-dependent
connection strength gsyn,ij between cells i and j was described by
gsyn,ij � W(�i � �j)Gsyn, where

W��i � � j� � J� 	 �J	 � J��e���i � �j�
2⁄2
2

and J� was set to satisfy a normalization condition (see Compte et al.
2000). The parameters used were 
E¡E � 9.4°, 
E¡I � 
I¡E �
32.4°, JE¡E

� � 5.7, JE¡I
� � JI¡E

� � 1.4, and JI¡I
� � 1.5. Thus the

connectivity between excitatory and inhibitory neurons was wider and
flatter than that between excitatory neurons. The connectivity between
inhibitory neurons was not spatially tuned. The strengths of the
connections were GE¡E � 0.7 nS, GE¡I � 0.49 nS, GI¡E � 0.935
nS, and GI¡I � 0.7413 nS. Apart from stimulus-selective inputs, all
neurons received uncorrelated random background excitatory input.
The times of incoming action potentials were modeled according to a
Poisson process with rate 1,800 sp/s. The conductances of this input
were gext¡E � 6.5 nS and gext¡I � 5.8 nS. The effect of incoming
action potentials was modeled through conductance-based synapses.
Thus postsynaptic currents followed the equation

Isyn � gsyns�Vm � Vsyn�
where gsyn is the synaptic conductance, s is the synaptic gating
variable, and Vsyn is the synaptic reversal potential (Vsyn � 0 for
excitatory synapses, Vsyn � �70 mV for inhibitory synapses). Recur-
rent excitatory connections were modeled to follow the dynamics of
NMDA receptor (NMDAR)-mediated transmission, external excit-
atory inputs to follow AMPA receptor (AMPAR)-mediated transmis-
sion, and inhibitory inputs to follow GABAA receptor (GABAAR)
transmission. The dynamics of the AMPAR and GABAAR synaptic
gating variables were modeled as an instantaneous jump of magnitude
1 when a presynaptic action potential occurred, followed by an
exponential decay with time constant 2 ms for AMPA and 10 ms for
GABAA. The NMDAR conductance was voltage dependent, and this
was modeled by multiplying gsyn by 1/(1 � [Mg2�]exp(�0.062Vm)/
3.57), with [Mg2�] � 1.0 mM. The dynamics of the NMDAR
synaptic gating were modeled by

ds

dt
�

�s

�s
	 �sx�1 � s�,

dx

dt
�

�x

�x
	 �

i
��t � ti�

where s is the gating variable, x is a synaptic variable proportional to
the neurotransmitter concentration in the synapse, ti are the presyn-
aptic action potential times, �s � 100 ms is the decay time, �x � 2 ms
controls the rise time, and �s � 0.45 kHz controls the saturation
properties of NMDAR channels.

Predictions from the model were derived from simulation re-
sults. Each simulation started with 100 ms of baseline activity,
followed by stimulus-specific stimulation during 500 ms, and
ended with a 500 ms-delay period (Fig. 1, B and C). The locations
of the memories for each item were read out with Bayesian or
maximum a posteriori decoding assuming an extended Poisson
model as described by Zemel et al. (1998). This encoding-decoding
framework was developed to handle situations where more than a
single value (for example, several locations) should be encoded
and decoded from the neural activity of a population of neurons.
With this method, from the neuronal activity one determines a
whole probability distribution over possible locations instead of a
single most likely location. This allows for the encoding and
decoding of different locations. The decoding distribution of items,
that is, the probability distribution of angular locations �j, was
estimated given the activity of the excitatory neurons in the last
100 ms of the delay period. For this, we used the function sqp from
the software package GNU Octave (Eaton et al. 2009) to maximize
an approximation of the logarithm of the probability distribution of
angular locations �j (Eq. 17 of Zemel et al. 1998):

AP��� j�� � �
i

rilog��
j

� j f�xij�� � �
j

�� j � � j	1�2

where ri is the activity of neuron i, xij is the difference between the
preferred angles of neurons i and j, f(xij) is a neuronal tuning function
assumed to be Gaussian with standard deviation 10°, set to match the
dispersion of the network response to one item (the tuning), and  �
10�7 is a weighting coefficient of the smoothness prior 	(�j �
�j�1)2, which imposes smoothness across angular locations �j. Single
values for the estimated locations of memorized items were found by
determining the locations �j corresponding to the local maxima of
AP({�j}). Before estimation, the spiking activity was resampled to a
resolution of 360 for efficiency. Memory imprecision for each stim-
ulus item was quantified as the distance in angle between that item
location and the closest local maximum of the posterior probability of
item locations, with the restriction that the distance had to be smaller
than 35°. This restriction ensured that in cases where the memory
trace vanished during the delay period the particular item was not
attributed to a memory trace and instead it was counted as forgotten.
In these cases the readout was taken to be a random location on the
circle to mimic a subject guessing a forgotten spatial location. In cases
where memory traces merged, the items were attributed to the same
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local maximum of the posterior probability. To study the effect of the
distance between two simultaneously presented items on WM perfor-
mance, we ran 100 simulations for different angular distance ��
between the two items (Fig. 2A; �� from 45° to 90°). From these
simulations we calculated the angular distance between remembered
locations and corresponding item locations. This angular distance is a
measure of error or bias in remembered location. If this bias was in the
direction of the location of other memorized items (Fig. 1B) we
defined it as a positive memory bias, corresponding to the attraction of
memory traces. If the bias was in the direction opposed to close-by
memorized items we defined it as a negative memory bias, corre-
sponding to the repulsion of memory traces. To study the relation
between precision and load for different positions of the items we ran
300 simulations for each load and for each stimulus distribution (far
or random cases; Fig. 2B). For trials labeled “random,” items were
simulated at random around a circle, with the restriction that they
could not be closer than 33°. In trials labeled “far,” we applied the
additional condition that at least one item per simulation (far item)
was �80° apart from all other items. The results were then
calculated, probing these far items. In particular, we computed
standard deviations of the angular distances between remembered
locations and corresponding item locations. We also calculated
psychometric curves for each load and stimulus distribution. To
this end, we counted for all simulations and for a given probed
angular distance how many memory traces were counterclockwise
in relation to the probed distance. The results are presented as
proportion of memories counterclockwise to the probed location,
as a function of angular distance between the probe and item. We
fitted these proportions using probit models with angular distance
as independent variable. The probit models were estimated with
the Statistics Toolbox of MATLAB.

The integration of the model equations was done with a second-
order Runge-Kutta algorithm. The simulations were performed with
code implemented in C��.

Behavioral Experiments

We used a vsWM task in which the subjects were presented with a
set of dots and had to judge after a blank delay period whether a
reappearing dot had been displaced clockwise or counterclockwise.
The experimental paradigm is schematically illustrated in Fig. 3A. The
stimuli were displayed on a computer screen, on a gray background.
Participants sat �60 cm from the screen and were asked to fixate the
central black square present during the whole trial time. Participants
were also asked to memorize each item per se and avoid remembering
the dots as a pattern. To limit the efficacy of pattern encoding
strategies, we introduced specific constraints for the location of the
items in each trial so that geometric symmetries or cardinal directions
were avoided (see below).

Each trial started with the presentation of a central fixation cue for
1 s, followed by the presentation of the visual stimulus for 1 s. The
stimulus consisted of a set of three or four colored dots (items)
presented on an invisible circle centered on the fixation point and with
a radius subtending a visual angle of 12.4°. The items were never
presented on the horizontal and vertical diameters of the circle. The
colors were attributed randomly to the different items for each trial.
The stimulus was followed by 100-ms presentation of a mask con-
sisting of an annulus (radii in visual angle 11.5° and 13.2°) of a
pixelized noise pattern in a gray scale. The mask was followed by the
presentation of a probe (in no-delay trials) or by a delay of 1 or 3 s (in
delay trials) followed by presentation of a probe. The probe stimulus
consisted of one of the stimulus dots displaced clockwise or counter-
clockwise on the invisible circle relative to the original stimulus
location. The task consisted of judging the direction of displacement
and reporting it by pressing one of two possible keys on a keyboard.
Participants were given 5 s to respond and always responded before
this time had elapsed. The probe was displayed until the subjects

responded. Participants were trained until they showed no problems in
associating the directions with the respective keys. It always took
fewer than 48 trials to automatize the association. The amount of
displacement in visual angle of the probe item was 0.9°, 1.3°, or 1.7°
(4°, 6°, and 8° along the circle), and the probe could not be in a
different hemifield than the corresponding target item. In half of the
trials the memory of an item that was far from all other items was
probed. For these trials, half showed all items far from each other
(minimal distance between items was 70° along the circle for load 3
and 50° for load 4). These trials are referred to as far trials in Fig. 3
and as balanced trials in Fig. 4. The other half of trials where an item
far from all others was probed had two nonprobed items close to each
other (minimal distance along the circle from the probed item to
another item was 90° for load 3 and 50° for load 4). These trials are
referred to as unbalanced trials in Fig. 4. Different restrictions on
distances were imposed on trials with loads 3 and 4 to ensure that a
substantial part of the circle was spanned by the locations (in angle)
of the items. With this, we wanted to minimize possible effects of
attention that could appear if subjects could focus on a small portion
of the circle and strategies to store items as geometric patterns. These
restrictions resulted in trial types with balanced (invariant) and un-
balanced (varying) distances across loads, which we used to demon-
strate the prediction of conditional dependence of precision on load
(see RESULTS). In half of the total number of trials the memory of an
item located close to another item was probed (the distance between
nearby items was between 10° and 20° along the circle, corresponding
to a visual angle between 2.2° and 4.2°). In half of these trials the
probe was displaced outward or away from the nearby item, and in the
other half of trials the probe was displaced inward or toward the
nearby item. For each trial type, trials were balanced in relation to
relative positions of the dots in the stimulus, the displacements of the
probe, the number of items, and the presence or absence of a delay
period. The experiment was run in sessions of 48 trials, lasting �5
min. Within each session the delay was fixed, and each participant ran
four sessions for each of three possible delays (no delay, 1 s, or 3 s).
Type of trial, direction and amount of displacement, color of dots, and
hemifield of the probed dot were randomized and balanced within
each session. The order of the sessions was randomized across
participants. Eight healthy participants (4 women, 4 men) took part in
the experiment, with ages between 23 and 37 yr and normal or
corrected-to-normal vision.

To check for evidence of errors due to misremembering the colors
of the items (Bays et al. 2009; Ma et al. 2014; Pertzov et al. 2012), we
conducted a variant of this vsWM experiment. The experimental
paradigm is schematically illustrated in Fig. 5A. The experiment was
exactly as the one described above, except for the response period.
After the delay period, the fixation dot changed from black to the color
of one of the previously presented items. The subject was required to
respond by indicating the remembered position of the item matching
the color of the fixation mark. To indicate the remembered position,
the subjects used a pressure-sensitive tablet and pen. The movement
of the pen was reproduced in the visual display as a cursor so that the
subject saw the colored fixation dot moving from the fixation spot to
the remembered position. The subject indicated the reported position
by releasing the pen from the tablet. All trials had a delay of 3 s, and
separation between nearby items ranged from 3.1° to 4.4° of visual
angle (14–20° on the circle). Data were acquired from four to eight
sessions from each of nine healthy participating subjects (4 women, 5
men) aged between 21 and 27 yr and showing normal or corrected-
to-normal vision. For each subject, sessions were typically acquired in
different days. Some participants completed fewer sessions because
they were not available for more data collection. The trials where the
probed item was near another item were classified into two trial types,
according to the probed item being clockwise or counterclockwise
relative to the nearby item.

Participants for both experiments were recruited among a local com-
munity of researchers and students from the Institut d’Investigacions
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Biomèdiques August Pi i Sunyer (IDIBAPS). The experiments were
conducted with the approval of the Comité Ético de Investigación
Clínica (CEIC) at the Hospital Clínic in Barcelona, and informed
consent was obtained from all participants before the experiments
took place.

Behavioral Data Analysis

Behavior from the first experiment was measured as the number of
correct trials. The results were analyzed with generalized mixed probit
models in R (R Development Core Team 2013), MASS package
(Venables and Ripley 2002), with participant as a random factor. For
the first test of our first prediction (see RESULTS), trial type, delay, and
the interaction between trial type and delay were used as independent
variables or predictors. For the second test of this prediction, the
amount of probe displacement was also included.

Since the interaction term was significant in both cases, the data
were separated according to delay and a model was fitted using trial
type as predictor for test 1 and trial type, amount of probe displace-
ment, and the interaction between these two variables as predictors for
test 2. For the test of the second prediction (see RESULTS), trial type,
delay, load, and amount of probe displacement were used as indepen-
dent variables. The model also included interactions between these
variables. Since an interaction between delay, trial type, and displace-
ment was found to be significant, the data were separated according to
delay. A new model without the delay variable was fitted. Since for
the delay trials we found an interaction between displacement, load,
and trial type, the data were further divided according to trial type. For
these new data partitions, a model was fitted using amount of probe
displacement, load, and the interaction between these two variables as
predictors.

Behavior in the second experiment was analyzed in three ways. For
testing the prediction of attraction, the data were analyzed with a
linear mixed model, with participant as a random factor and trial type
as a predictor. To test the dependence of memory biases on interitem
distance (Fig. 6), we fitted cumulative Gaussians to the cumulative
fraction of error reports (Fig. 5B), collapsing clockwise and sign-
inverted counterclockwise errors, and we used the fitted mean as an
estimate of the memory bias (Fig. 6A). Positive biases thus reflected
attraction, and negative biases reflected repulsion of the two memo-
ries. In Fig. 6B we assessed the significance of each participant’s
memory bias with a two-sample t-test on the error distributions of
clockwise and counterclockwise trials. We used a multinomial regres-
sion model to test whether the relative incidence of significant repul-
sion biases compared with attraction biases increased with interitem
distance in our subject population (Fig. 6B). The dependent variable
could take three possible values: attraction, repulsion, or no effect. For
each subject, we got three measurements of the dependent variable,
corresponding to three bins of distances between items (Fig. 6). The
model included an intercept and the interitem distance (taking values
3, 3.75, 4.2) as predictors. The link function was a generalized logit
function.

Finally, to test alternative statistical models, the data were fitted to
three statistical models detailed below using a custom expectation
maximization algorithm for the maximum likelihood estimation
(Dempster et al. 1977) based on publicly available code (Bays et al.
2009; http://www.paulbays.com). Model comparison was done with
the Akaike information criterion (AIC) (Akaike 1974), which is a
measure of the relative quality of a statistical model for a given data
set. Information loss of one model relative to another was then
calculated by the differences between AIC values (Burnham and
Anderson 2004). The information loss �AIC of each model compared
with the best (that with the lowest AIC) was calculated for each
subject and then averaged across subjects. The relative likelihood of
model i relative to the best model was computed as exp(�AICi/2).

Statistical Models

A possible explanation for the errors in the task could be a wrong
association (or binding) of color and location of the items (Bays et al.
2009; Ma et al. 2014; Pertzov et al. 2012). To access whether
interference (attraction) between memory traces of item locations or
misbinding best explains our experimental results we used three
statistical models, here called swap, attraction, and attraction � swap
models. All the models assume that the experimental distribution
fEXP(��) of errors in reported angle �� can be described as a mixture
of von Mises components (Fig. 5C), a circular analog of the Gaussian
distribution with dispersion parameter 
, defined as �
(��) �
exp[cos(��)/
2]/(2�I0(1/
2)), with I0 the modified Bessel function of
order 0.

Swap model. This model is the one introduced by Bays et al. (2009)
to account for performance on a recall task in which both stimuli and
responses are chosen from a circular parameter space. The model
assumes that the experimental distribution can be described as a
mixture of three components:

fEXP���� � pt�
���� 	 pnt

1

n�
i

�
���i
�� 	 pu

1

2�

The first component, weighted by pt, describes the responses to
correctly remembered items, where the subject reports the remem-
bered position with some uncertainty around the error to the actual
location of the target item. This is modeled using the von Mises
distribution centered around the error to the target ��, with dispersion
parameter 
. The second component, weighted by pnt, describes the
responses to nearby nontarget items, i.e., responses indicating the
remembered location of a nontarget item (item with a color different
from the probed color). Such responses reflect errors in the binding of
color and location of an item (swap errors; Bays et al. 2009). This is
also modeled using a von Mises distribution with dispersion param-
eter 
, but now centered on the error to the nontarget location ��* �
� � �nt. Finally, the third component describes the situation where the
item location is forgotten and the subject guesses according to a
uniform distribution. The model has three parameters pt, pnt, and 
,
which can be estimated to fit the experimental data.

Attraction model. In this model the subjects’ reports are described
by a unimodal von Mises distribution centered on a location interme-
diate between the target and nontarget items. This displacement would
occur as a result of the attraction of coding bumps in our more detailed
model of Fig. 1. This model drops one of the components, the
possibility of having swap errors, and introduces a bias b in the mean,
representing the attraction effect:

fEXP���� � pt�
��� 	 b� 	 pu

1

2�

Since nearby items were separated by different distances �i, the bias
bi in individual trials was constrained to be a fraction of �i: bi � b=�i,
and we estimated the constant factor b=. In total, the model has three
parameters pt, 
, and b=, which can be estimated to fit the measured
data.

Attraction � swap model. Finally, both errors might coexist: In
some trials the two features of the stimulus are misbound, but in any
case reports (to target or to nontarget items) are biased toward the
nearby stimulus. This model is the same as the swap model but with
one more parameter for the bias:

fEXP���� � pt�
��� 	 b� 	 pnt

1

n�
i

n

�
���i
� � b� 	 pu

1

2�

Note that the bias b (as above, bi � b=�i) affects equally the responses
to both target and nontarget items. This model has four parameters pt,
pnt, 
, and b= that can be estimated to fit the experimental data.
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RESULTS

Predictions from Computational Model

We used an existing computational model (Compte et al.
2000; Edin et al. 2009) to study vsWM of several simultane-
ously presented items. For simplicity, we considered only the
memory storage of locations at equal eccentricity, so that the
item locations could be labeled by an angle �. The model
consists of a one-dimensional network of neurons connected in
a topographic manner (Fig. 1A), so that neurons encoding
nearby locations have stronger connections than neurons en-
coding far-apart locations. This structure enables the network
to sustain stimulus-selective activity during a delay period
(Compte et al. 2000). When plotting the activity of excitatory
neurons organized according to their selectivity (Fig. 1, B and
C), the sustained spiking corresponding to a memory trace is
visualized as a spatially localized bump of activity in the
network (y-axis) that is persistent over time (x-axis). The
continuous topographic structure of the network connectivity
implies that memory traces maintained simultaneously are not
independent and interfere with each other. It further implies
that the interference is dependent on the relative locations of
the angles memorized, more interference being expected for
nearby items than for far-apart items. Possible types of inter-
ference of memory traces are attraction (Fig. 1B), repulsion,
and extinction (Fig. 1C). To study the effects of interference on
vsWM for several items we started by considering two items
and we systematically changed the angle �� separating them.
We measured memory bias as the angular distance between
cued locations and memory locations encoded in network
activity 0.5 s after stimulus extinction (MATERIALS AND METH-
ODS). Furthermore, we defined memory bias as being positive
when it reflected attraction between memory traces and nega-
tive when it reflected repulsion between memory traces. Figure
2A shows that there is a large attraction effect for angles

smaller than 60° and an intermediate repulsion effect for
intermediate angles, which disappears as �� increases. Our
simple model cannot match quantitatively the conditions of a
real cortical circuit, and hence we do not know in what range
of �� we should expect the different behaviors, attraction and
repulsion. However, we do know that for small angles between
items we should have an attraction effect, while for very large
angles we should have no effect. Based on this we sought to
mainly test our model by using items very close by or in
relative isolation, where we would not need to search for
subject-dependent angles leading to repulsion. Hence, the first
prediction we aimed at testing in behavioral experiments was
that vsWM for adjacent locations should show biases consis-
tent with a perceived attraction between the two items. We
refer to this prediction as the “prediction of attraction biases.”
We have, however, also checked a posteriori our experimental
data for evidence of the predicted repulsive effects at interme-
diate interitem distances (see Testing Repulsion Biases).

We then studied how interference affected precision in our
network model when the number of items to be memorized (the
load) increased. We measured the standard deviation over trials
of report errors 
 in simulation series where different numbers
of items (from 1 to 4) were presented to the network for
memorization. We considered two cases. In the first case, we
minimized interference by keeping distances between items large
(far case). In the second case, the items were located at random
(random case). We found that 
 depended markedly on load in the
random case, while it remained relatively constant as load
changed in the far case (Fig. 2B). This was because when items
were randomly placed the probability of having items separated in
the range of interference (Fig. 2A) increased with load. When this
probability was only allowed to change minimally with load, as in
the far case, 
 remained practically constant.

This effect can be demonstrated in the shape of psychomet-
ric curves. We used the same simulations as above to derive
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Fig. 1. The biophysical network model. A:
schematic representation of the ring structure of
the network model (left) and of the connectivity
structure (right) between excitatory (black tri-
angles) and inhibitory neurons (gray circles).
Neurons encoding similar angles were strongly
connected as illustrated by the width of the
lines connecting cells. Connections onto excit-
atory neurons are indicated with a solid line and
connections onto interneurons with a dashed
line; excitatory connections are indicated in
black and inhibitory connections in gray. B:
example activity of excitatory neurons in the
network, when items were located in the vicin-
ity of each other, leading to attraction of the
memory traces. C: example activity of excit-
atory neurons in the network in a trial with 3
presented items, illustrating the loss of a mem-
ory trace during the delay period.
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psychometric curves showing the proportion of items that are
judged counterclockwise to a probed location (MATERIALS AND

METHODS) as a function of angular distance between probed
location and item location (Fig. 2, C and D). For the simula-
tions where only far items were probed, the psychometric
curves changed minimally with load (Fig. 2C). For the simu-
lations where items were randomly placed, the psychometric
curves for loads 3 and 4 showed greater difference (Fig. 2D).
The different slopes of the psychometric curves reflect differ-
ent memory precisions for loads 3 and 4, consistent with
greater interference of neighboring bumps in load 4 trials.
Therefore, our second prediction was that the previously re-
ported loss of precision with load (Bays and Husain 2008)
would largely depend on the relative positioning of the items to
be memorized, being minimized when the minimal distances
between the items in the visual stimuli are large. We refer to
this prediction as the “prediction of conditional dependence of
precision on load.”

Testing Prediction of Attraction Biases

To test the predictions from the model, we used the behav-
ioral experiment illustrated in Fig. 3A. The experimental par-
adigm was adapted from a previously reported paradigm (Bays
and Husain 2008) used to investigate the loss of precision with
load in a vsWM task in humans. For each trial the subjects
were required to keep in mind the locations of three or four
colored dots positioned on an invisible circle (stimulus). After
presentation of a visual mask, and in some trials after an
additional short delay period (1–3 s), one colored dot reap-
peared on the invisible circle (probe) and the task was to judge
whether it had been displaced clockwise or counterclockwise.
The average accuracy on this task was 70% correct. All

subjects performed significantly above chance level, with ac-
curacies ranging from 59% to 79%.

We conducted two tests of the prediction of attraction biases.
For the first test we used the trial types depicted in Fig. 3B and
labeled them as far and outward trials. In the far trials all items
were located far apart from each other. In the outward trials the
probed item was presented within a visual angle of 4.2° from
another item, and it was displaced outward (or away) from the
nearby item (see MATERIALS AND METHODS). In such trials, if the
predicted attraction between bumps of activity corresponding
to neighboring items occurred (Fig. 1B, Fig. 2A), we expected
the memory of any one of these two adjacent items to be biased
toward the middle point between them. As a result, a probe
displaced outward from the corresponding target, whose mem-
orized location has been attracted to the neighboring item,
would appear to have been subject to a larger displacement
than the actual one. This would help the subject to judge
correctly the displacement as outward as opposed to inward.
This is schematically depicted in Fig. 3D. The bell-shaped
curves in Fig. 3D represent the probability distributions of the
locations stored in memory over multiple trials of two fixed-
cue stimulus configurations, corresponding to far and outward
trial categories, respectively. One can see that the distance
between the mean location of the remembered item and the
location of the probe is smaller for far trials (distance 1) than
for outward trials (distance 2). The location of the probed item
defines an area under the tail of the probability function that is
larger for the far trials (area 1) than for the outward trials (area
2), and this determines the probability of incorrectly judging
the direction of displacement of the probe. This should result in
better performance for outward trials than in a control condi-
tion without interference, as in far trials. This is indeed what
we observed in our behavioral data set: The fraction of behav-
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Fig. 2. The biophysical network model predicts
behavioral effects in multi-item visuo-spatial
working memory (vsWM) tasks. A: memory
bias as a function of angle between 2 items
simultaneously presented. The results are aver-
ages over 100 simulations and are based on
memory traces after 500 ms from stimulus
offset. Memory biases toward the other pre-
sented item (attraction) were defined as posi-
tive, while biases away from the other pre-
sented item (repulsion) were defined as nega-
tive. The bias for small angles is easier to
explore experimentally and leads to the formu-
lation of the prediction of attraction biases. B:
standard deviation error of the memory trace
after 500 ms as a function of load. The standard
deviation error was relatively constant for far
items and increased with load for randomly
located items, leading to the prediction of con-
ditional dependence of precision on load. C:
proportion of probes judged to be displaced
counterclockwise from the memorized item.
The results are for far items and loads 3 and 4
and were fitted with a probit model with dis-
placement of the probe as independent vari-
able. D: same as C but for randomly located
items. C and D use the same simulations as in
B and show that for far items there is no
decrease in precision with load, which is ob-
served for randomly located items. This obser-
vation also leads to the prediction of condi-
tional dependence of precision on load.
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ioral errors for far trials was significantly larger than that for
outward trials (P � 0.01) (Fig. 3C). However, the effect
observed could have occurred before the delay period, during
encoding of the visual stimulus. We rejected this explanation
by testing for a difference between trials with and without
intervening delay between visual stimulation and response. We
found a significant interaction between trial type (far or out-
ward) and delay (P � 0.03) and no significant difference
between trial types for no-delay trials (Fig. 3C).

For the second test of the prediction of attraction biases we
used the trial types depicted in Fig. 3E and labeled them as
counterclockwise and clockwise trials. In both trial types the
probed item was located adjacent to another item. For coun-

terclockwise item trials the probed item was located counter-
clockwise to the neighboring item, and for clockwise item
trials the opposite was verified. If attraction occurred, we
expected the memory to be biased and the psychometric curves
of the two trial types should be horizontally displaced instead
of centered at zero probe displacement. The predicted displace-
ment would be clockwise (counterclockwise) for counterclock-
wise (clockwise) item trials, indicating that nearby items were
perceived to be attracted to each other. The data confirmed this
prediction (Fig. 3F). The two psychometric curves were sig-
nificantly different from each other (P � 0.0001), and the
effect appeared with delay, as verified by a significant interac-
tion (P � 0.0001) between trial type and delay. Note that the
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rived prediction of attraction biases. A: sche-
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behavioral experiment. B: illustration of the
sorting of trials according to relative positions
of the items. In one case, items were far from
each other (far trials, framed in black). In the
other case, the target item was presented close
to another item and was displaced away from its
neighbor during probing (outward trials, framed
in green). C: fraction of errors averaged over
participants (n � 8) in 48 trials of each trial type
(delay/no delay and far/outward). Data were
analyzed with a probit model. There was a
significant interaction between delay and trial
type. For no-delay trials there was no difference
between the fraction of errors for far and out-
ward trials, while there was a significant differ-
ence for delay trials. *Significant differences.
Error bars indicate SE. D: schematic illustration
of the mechanism thought to underlie the de-
crease in errors for outward trials compared
with far trials. Bell-shaped curves represent the
probability distribution of the remembered lo-
cations. The probed item defines an area under
the probability function. This area is the proba-
bility of incorrectly judging the direction of
displacement of the probe and is larger for far
than outward trials (a2 � a1). The distance
between location of the item and the location of
the probe is larger for outward trials (d1 � d2).
Hence, the probability of a correct response in
outward trials is larger than in far trials, as
observed experimentally. E: illustration of an-
other sorting of trials, all containing the probed
item in the vicinity of another item. Trials were
sorted according to the clockwise or counter-
clockwise location of the probed item relative to
the neighboring item. F: psychometric curves
for clockwise and counterclockwise trials were
horizontally displaced in relation to each other.
Curves resulted from a probit model fit to data
from all participants (n � 8). The results of C
and F are consistent with the prediction of
attraction biases.
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magnitude of the attractive bias was indicative of a partial
attraction, not a complete merge of the memories (mean
distance between close-by items was 3.2 	 0.14° of visual
angle, so a complete merge would correspond to a horizontal
displacement by 1.6 	 0.14° of visual angle in Fig. 2E).

Testing Prediction of Conditional Dependence of Precision
on Load

To test this prediction we used two different trial types
having in common that the probed item was not in close
vicinity to any other item (�50° along the circle). These
different trial types result from the following considerations on
the experimental design (for details see MATERIALS AND METH-
ODS). We designed the experiment such that each load condi-
tion included a balanced number of trials with the probed item
far from or close to neighboring items. The former trials
(probed item far) contained a balanced number of trials with
nonprobed items in a far or close configuration, giving rise to
the two trial types used in this section. Furthermore, a rela-
tively large part of the circle was covered by the items in each
trial by experimental design, in order to minimize possible
effects of focusing the attention on a restricted arc. Given these
constraints, the two trial types had different interitem distance

properties in relation to load, which we took advantage of to
test our second model prediction. In one trial type (far non-
probed items) the minimal distance from the probed item to
other simultaneously presented items was relatively invariant
with load (Fig. 4A), and therefore these trials are referred to as
balanced trials. In the other trial type (close nonprobed items)
the minimal distance between the probed item and other items
varied markedly between loads (Fig. 4B), and therefore they
are referred to as unbalanced trials. Note that the labels “bal-
anced” and “unbalanced” refer to the distance between probed
item and the nearest item being practically invariant (balanced)
or varying significantly (unbalanced) across loads. This differ-
ence is summarized in Fig. 4C, showing the mean of the
minimal distances for the two loads, which is the same for
balanced trials but differs for unbalanced trials. With this set of
trials that dissociate load changes from changes in interitem
distances, we went on to test behavioral performance in the
task to validate the model’s prediction. We found that there
was a significant interaction of trial type (balanced/unbalanced)
and probe displacement on the fraction of correct responses
(P � 0.05). Furthermore, we found no difference between the
psychometric curves for loads 3 and 4 for balanced trials (Fig.
4D), but a difference emerged (P � 0.03) for unbalanced trials
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(Fig. 4E). The difference between the psychometric curves for
loads 3 and 4 in unbalanced trials corresponded to a loss of
precision with load (Fig. 4F). Precision is here defined as the
inverse of the standard deviation of the cumulative normal
curves fitted to the data (Bays and Husain 2008), and it
quantifies the slope of the psychometric curve at zero probe
displacement. This loss of precision was not observed when the
distances were balanced across loads (Fig. 4F), thus confirming
our second prediction. The observed differential loss of preci-
sion with load for unbalanced trial types appeared with delay:
We verified that there was a significant interaction between
delay, displacement, and trial type (P � 0.05) and that for the
cases with no delay there was no interaction between trial type
and displacement or load. That is, the differences in psycho-
metric curves observed in trials with delay were not present
with no delay.

Testing a Swap-Error Model

An alternative explanation for the results in Fig. 3, C and F,
is that in some error trials the subjects swapped the colors and
locations of the two memorized nearby items (Bays et al. 2009;
Ma et al. 2014; Pertzov et al. 2012). Misremembering the
binding between color and location would also result in a
reduced fraction of errors for outward trials. Intuitively, in
trials where the color and locations memories are swapped, the
perceived displacement of the probe would be large (the
distance between items plus the actual displacement) and
therefore the response would be correct with higher probabil-
ity. Thus we carried out another experiment to contrast this

misbinding hypothesis with the memory attraction hypothesis
supported by our computational model.

To check for evidence of swap errors in our experimental
context, we collected behavioral data in a variant of the
original paradigm (Fig. 5A and MATERIALS AND METHODS). In this
task, nine participants had to report the remembered locations
by controlling a cursor. We quantified behavioral performance
with the standard deviation of the error-to-target distribution,
which was 3.6 	 0.6° of visual angle across subjects (range:
2–7.5°). If we excluded trials for which the error to target
exceeded 45° along the circle, the error-to-target standard
deviation was 2.8 	 0.4° of visual angle (range: 1.5–5.8°).

First, we checked that the results shown in Fig. 3 were also
verified in the modified experimental paradigm. Indeed, we
found that there was a significant difference between the
reported errors for the counterclockwise and clockwise trial
types (Fig. 5B, P � 0.0001). Similar as in Fig. 3, these data
were consistent with attraction of the two memories. We were
able to measure the specific fraction of a perfect merge verified
in the data. We did this by normalizing the mean error in each
trials to the distance between close stimuli. The subjects who
showed a significant effect (5 of 9) presented 26 	 8% (39 	
6%) of the attraction expected for a total merge of the mem-
ories in clockwise (counterclockwise) trials.

We then fitted behavioral reports with statistical models that
included Gaussian-like distributions around the target memory
items (MATERIALS AND METHODS), using a custom expectation
maximization algorithm based on Bays et al. (2009). For all
tested models, the dispersion parameter 
 estimated from trials
with close probed items (
 � 7.63 	 0.88° along the circle;

Fig. 5. Behavioral data suggest that attrac-
tion of memory representations and not swap
error is responsible for memory biases ob-
served in close trials. A: schematic illustra-
tion of the modified experimental paradigm,
where participants indicated the remembered
target location upon appearance of a colored
cue in the center of the screen. B, top: dis-
tributions of error to target for clockwise
(gray) and counterclockwise (black) trials
differed significantly (P � 0.00005, data
from all participants n � 9), revealing an
attractive bias. Bottom: cumulative propor-
tion of errors to target from the distributions
at top, to compare with psychometric curves
in Fig. 2E. Data were fitted with a cumula-
tive normal function. C: schematic illustra-
tion of the probability density function for
each of the 3 models tested: swap, attraction,
and attraction � swap models. D: average
information loss �AIC across subjects (n �
8) for swap and attraction � swap models
compared with the attraction model, the best
model for data from these participants.
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n � 9) did not differ significantly from that estimated from
trials with far probed items (paired t-test, P � 0.05; n � 9),
suggesting that differences in precision between isolated and
clustered memory items (Fig. 3C) were not due to different
memory resolutions in these two situations. Instead, we tested
the hypothesis that these differences occurred as a result of
memory biases caused by neighboring memories, and we
contrasted three different models (MATERIALS AND METHODS): an
attraction model, in which responses to the target stimulus
experienced a mean bias toward the neighboring memory; a
swap model, in which responses to target stimuli were unbi-
ased but in some trials responses clustered around the neigh-
boring nontarget item; and an attraction � swap model, which
combined the two situations: a fraction of swap responses and
a mean bias toward neighboring memories (Fig. 5C). Note that
for the swap model we only considered swaps between
close-by items. We compared the estimated maximum likeli-
hoods of each model using differences in the AIC (MATERIALS

AND METHODS). We calculated this difference between all the
models and the best model. The best model (that with the
lowest AIC) was the attraction model for all but one partici-
pant, for whom the attraction � swap model had the lowest
AIC (�AIC for the swap model was 11.7, i.e., a relative
likelihood � 0.0001). We excluded this subject to calculate the
average information loss of the swap and attraction � swap
models relative to the attraction model for the other partici-
pants. The swap model was the worst of the three statistical
models tested (Fig. 5D). Adding up AICs for these eight
participants, the relative likelihood of the swap model com-
pared with the attraction model was �10�4. These results led
us to discard an explanation based on swap errors alone for the
memory attraction that we demonstrated in Fig. 3.

Testing Repulsion Biases

Our model also predicts repulsion for intermediate distances
between close-by items (Fig. 1B). This is a result of the limited
divergence of inhibitory connections in the network (medium-
range inhibitory connectivity, see MATERIALS AND METHODS). We
could test this prediction in our second experiment. As shown
in Fig. 6, the interaction between two nearby memories tran-
sitioned from attraction to repulsion as the interitem distance
grew, matching qualitatively our network simulations (Fig.

1B). We computed the memory bias from the psychometric
curve fit for each subject (MATERIALS AND METHODS) and plotted
it against distance between items (Fig. 6A). Across subjects,
the attractive memory bias of the psychometric curve de-
creased significantly (1-tailed paired t-test, P � 0.02; n � 9)
from very close memories (3.0–3.5° of visual angle, memory
bias 95% confidence interval [0 0.7]°, permutation test P �
0.05) to slightly more distant ones (4.2° of visual angle), at
which point the memory bias became marginally negative
(memory bias 95% confidence interval [�1.2 0.1]°, permuta-
tion test P � 0.07). In addition, we tested significant memory
biases within subjects (MATERIALS AND METHODS), and we found
that the number of subjects with a significant repulsive (attrac-
tive) memory bias increased (decreased) with distance between
items (Fig. 6B; multinomial regression model P � 0.035,
MATERIALS AND METHODS), indicating a consistent but individu-
ally specific dominance of repulsion for intermediate distances.

DISCUSSION

In the present study we investigated the neural circuit mech-
anisms of vsWM limitations by formulating predictions from a
specific neural circuit hypothesis and by testing them in new
behavioral experiments. Specifically, we confirmed model-
predicted attractive and repulsive biases in the recollection of
items located nearby in space, and we found that the model-
predicted reduction in vsWM precision caused by the presence
of nearby memorized items could explain the previously re-
ported decrease of vsWM precision with load (Bays and
Husain 2008). Taken together, our results support the encoding
of vsWM in sustained activity of topographically organized
neural circuits.

Item Similarity, Interference, and WM

With this work we contribute to two partially overlapping
debates on the behavioral aspects of visual WM. One of these
debates revolves around the impact of similarity and interfer-
ence between items, between items and distractors, and be-
tween items and landmarks on WM performance. Several
studies have demonstrated such effects in vsWM in the pres-
ence of landmarks (Werner and Diedrichsen 2002), WM with
distractors (Herwig et al. 2010; Kerzel 2002; Macoveanu et al.
2007; Van der Stigchel et al. 2007), memory of sequential

Fig. 6. Memory repulsion emerges for inter-
mediate distances between close-by items.
A: subject-averaged memory bias (MATERI-
ALS AND METHODS) for trials with different
distances between memorized close-by
items (x-axis). Shading indicates bootstrap-
derived 95% confidence intervals. *Signifi-
cant difference as evaluated with 1-tailed
paired t-test at P � 0.05. B: no. of subjects
with significant (t-test P � 0.05) attractive
and repulsive memory bias in trials with
different interitem distance.
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items (Papadimitriou et al. 2015), vsWM with memory manip-
ulation (Oberauer and Kliegl 2006), WM of colors (Brady and
Alvarez 2011; Elmore et al. 2011; Johnson et al. 2009; Lin and
Luck 2009), WM of spatial frequency (Huang and Sekuler
2010; Mazyar et al. 2012; van den Berg et al. 2012; Viswana-
than et al. 2010), WM of sizes (Brady and Alvarez 2011), and
WM of orientation (Johnson et al. 2009; van den Berg et al.
2012). However, these studies found discrepant results con-
cerning the impact of item similarity and interference. To our
knowledge we are the first to demonstrate a similarity effect for
WM of simultaneously memorized spatial locations: the attrac-
tion effect of neighboring items. We have provided evidence of
a detrimental effect of similarity interference on performance,
but we identified one specific condition under which the
similarity effect results in vsWM performance enhancement:
when the test is presented away from the nearby memorized
item (Fig. 3C). This is consistent with an attraction of the
representations of memorized nearby locations. The analogy
between the attraction of memories and the previously reported
attraction between a memory and a distractor (Herwig et al.
2010; Macoveanu et al. 2007) and between a memory and an
irrelevant previous memory (Papadimitriou et al. 2015) sug-
gests that distractors compete for a representation in the same
memory circuits as actual memories, similar to the hypothesis
of current neural models of vsWM (Cano-Colino et al. 2013;
Compte et al. 2000; Macoveanu et al. 2007).

Conceptually, the very existence of similarity effects has
led some authors (Elmore et al. 2011; van den Berg et al.
2012) to interpret them as support for a resources model of
WM (Ma et al. 2014; Wilken and Ma 2004), which in its
most basic formulation states that WM can be seen as a
resource shared between the memory representations of the
different items. Indeed, similarity effects are not accommo-
dated naturally in the alternative model, the slots model of
WM, which states that one memorizes each item indepen-
dently until a maximal number of items is reached (Luck
and Vogel 1997, 2013). As some authors have noted, how-
ever, similarity or interference effects would not pose any
problem for the slots model if they primarily occurred in the
encoding phase, not the mnemonic phase of the task (Johnson
et al. 2009; Lin and Luck 2009). In our experiments, similarity
effects are not present when there is no delay period and the
task is otherwise identical. This suggests that spatial interfer-
ence of memorized locations occurs during the maintenance of
information in WM and not during the encoding of informa-
tion. An alternative explanation for the results in Fig. 3, C and
F, is that the participants remembered in some trials the colors
of two nearby items swapped (Bays et al. 2009; Ma et al. 2014;
Pertzov et al. 2012). To have an idea about how prevalent this
type of error was in our experimental setup, we ran an addi-
tional experiment. We found clear evidence that swap errors
alone cannot explain the prediction of attraction biases, and so
we conclude that attraction of memory traces is a more plau-
sible explanation for our results. Note, however, that the
amount of swap errors is probably closely related to the
specifics of the task and previous studies that found substantial
evidence for swap errors did not use vsWM but tasks based on
WM of color (Bays et al. 2009) or orientation (Pertzov et al.
2012).

WM Precision with Load

A second debate concerns the relation between precision of
vsWM and number of items to memorize (WM load) and its
implications for the nature of WM. Some authors found a
decrease of precision with load (Bays et al. 2009; Bays and
Husain 2008), supporting the resources model (Wilken and Ma
2004) of WM, while others found a saturation of precision with
load (Zhang and Luck 2008), supporting models of the family
of the slots models (Luck and Vogel 1997; Zhang and Luck
2008). Crucially, in these slots models information about
further items cannot enter WM after reaching a maximum
number of memorized items. Much ongoing research on WM
limitations has focused on resolving the dichotomy between
these two alternatives, providing new experimental evidence
and leading to further development of algorithmic models,
including hybrid models with characteristics from the slots and
resources models (Alvarez and Cavanagh 2004; Anderson et
al. 2011; Bays et al. 2009; Bays and Husain 2008; Buschman
et al. 2011; Elmore et al. 2011; Luck and Vogel 2013; Ma et al.
2014; van den Berg et al. 2012; Xu and Chun 2006; Zhang and
Luck 2008). A parallel line of research is focusing on the
circuit mechanisms of vsWM in biologically detailed network
models (Bays 2014; Compte et al. 2000; Edin et al. 2009;
Macoveanu et al. 2007; Wei et al. 2012) that are typically hard
to classify into any of these abstract model categories. We took
one such biologically detailed model and found that the inter-
ference between items causes, on average, loss of memory
precision (see also Wei et al. 2012). As the number of items in
a constrained area increases, the probability of having interfer-
ence between memories increases and hence a loss of precision
with load is observed. The model thus predicts that the de-
crease of vsWM precision with load depends largely on the
relative location of the items. Our experimental results were
consistent with a distance-dependent relation between preci-
sion and load, showing both a reduction of precision with load
(Fig. 4E) and a lack thereof (Fig. 4D) on the same behavioral
data, depending on a selection of trials based on interitem
distance. This suggests that interitem distance could be a factor
explaining the conflicting results in the literature (Bays and
Husain 2008; Zhang and Luck 2008). Furthermore, our exper-
iments showed that the relationship between spatial memory
precision and load emerged through the delay. This suggests
that explanations based on the processes of memory encoding
and decoding (Bays 2014) need to incorporate also the role of
memory maintenance mechanisms.

WM Model

The network model was used with the same parameters as in
Edin et al. (2009), without further tuning. We did not seek a
quantitative match between the angles or times used for the
behavioral experiments and model simulations. Such a match
can be sought by changing parameters of the model; for
example, increasing the size of the network would make the
values of angular distances and times in the model approach
those of the experiments, at the cost of slower simulations.
Such procedure would make model testing impractical without
providing any significant conceptual advantage. Hence, we
searched for qualitative robust predictions to test experimen-
tally. Consistent with this, Wei and coauthors (Wei et al. 2012)
working in parallel in a similar model derived predictions
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qualitatively in agreement with ours but based on different
activity patterns. Indeed, their model differs from ours funda-
mentally in that it features a normalization regime in which the
same number of active neurons is split among the number of
items encoded, with the overall population activity invariant
with load (see also Bays 2014). This is not the regime of
operation of our network, which shows graded rate responses
and mean firing rates increasing with load (Edin et al. 2009).
Another difference between the models is that our model, but
not the model of Wei et al. (2012), predicts repulsion between
memory traces. Our experimental results (Fig. 6) show evi-
dence for repulsion, hence supporting our model. Further
exploration of the regimes where the two models operate
should provide new discriminating predictions to test against
experimental data in the future. Johnson and coauthors (John-
son et al. 2009) also proposed a firing rate model explaining
color similarity effects based on a specific decoder mechanism,
in contrast with our model, which allocates the mechanism in
the dynamics of the circuit during the maintenance phase. Our
experimental results for vsWM show that the similarity effects
appear with delay and therefore are not originated during the
encoding or decoding phases of the task. This is consistent with
interference during the active maintenance of memory. We
note, however, that different mechanisms might be behind the
effects described for color (Johnson et al. 2009) or orientation
(Bays 2014) WM tasks. Finally, our model did not simulate all
components of the tasks: Our tasks demanded the binding of
two different features (color and position), while the model
was only simulating the storage of position. This is partly
because of the lack of a consensual model for feature binding
in WM, but also because the behavioral effects that we are
reporting proved not to depend crucially on such binding.
Indeed, we demonstrate in our last experiment that the attrac-
tion effect is independent of swap errors. This result justifies
interpreting our data with a simplified model representing only
location information. However, a complete understanding of
this task will require explicitly simulating the binding compo-
nent.

Our results advance our understanding of vsWM in terms of
its neuronal circuit underpinnings by providing evidence for a
critical assumption of an explicit computational model of
vsWM, namely, that vsWM is supported by a network of
neurons organized according to a continuous topography in
terms of internal connectivity and external inputs received.
This topographic connectivity enables the model to sustain a
continuous attractor mechanism, in which memories of neigh-
boring items interfere (Amari 1977). Recently, direct experi-
mental evidence from neural activity in the prefrontal cortex of
monkeys performing a single-item spatial WM task has been
obtained in favor of this continuous attractor mechanism
(Wimmer et al. 2014). Here the consistency of our experi-
mental results with the model predictions in the case of
multi-item WM lends further support to the continuous
attractor as the basis of vsWM. Furthermore, the model
explains parsimoniously behavioral effects that cannot be
consistently integrated within the prevalent algorithmic
models for vsWM. This underscores the potential of using a
circuit-based framework to interpret experimental results on
the mechanisms of vsWM.
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