
Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Neurobiology
Towards biologically constrained attractor models of
schizophrenia
Heike Stein1,a, Joao Barbosa1,a and Albert Compte2
Abstract
Alterations in neuromodulation or synaptic transmission in
biophysical attractor network models, as proposed by the
dominant dopaminergic and glutamatergic theories of schizo-
phrenia, successfully mimic working memory (WM) deficits in
people with schizophrenia (PSZ). Yet, multiple, often opposing
alterations in memory circuits can lead to the same behavioral
patterns in these network models. Here, we critically revise the
computational and experimental literature that links NMDAR
hypofunction to WM precision loss in PSZ. We show in network
simulations that currently available experimental evidence
cannot set apart competing biophysical accounts. Critical
points to resolve are the effects of increases vs. decreases in
E/I ratio (e.g. through NMDAR blockade) on firing rate tuning
and shared noise modulations and possible concomitant defi-
cits in short-term plasticity. We argue that these concerted
experimental and computational efforts will lead to a better
understanding of the neurobiology underlying cognitive deficits
in PSZ.
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methyl-D-aspartic acid; NMDAR, NMDA receptor; STP, short-
term plasticity.
As part of the new field of computational psychiatry,
computational models have been increasingly used to
link molecular and cellular mechanisms with systemic
www.sciencedirect.com
and behavioral alterations in psychiatric diseases [1e3].
Dynamical network accounts of brain disease reach from
models of distributed processing across brain areas to
biophysical models of the local cortical circuitry [4,5].
Computational models contribute quantitative per-
spectives and mechanistic hypotheses about patholog-
ical brain functions that have a transformative potential
on psychiatric research [6]. However, advancing

toward valid model-based links between mechanisms
and symptoms will require a concerted effort of theo-
retical and neurophysiological research to select among
currently underconstrained computational models. We
illustrate this point here by focusing on circuit models of
association cortices that reproduce working memory
(WM) alterations in people with schizophrenia (PSZ)
(Figure 1a and Box 1; for a comprehensive review on
computational models of schizophrenia, see Refs. [1e
3,7]). These specific models have attracted attention
for combining rich quantitative descriptions of multiple

behavioral deficits in PSZ with detailed, biologically
plausible mechanisms (Box 1), informed by neuro-
physiological data from behaving animals [8e11] and
in vitro experiments [12,13]. Briefly, WM in these circuit
models is held in patterns of sustained, stimulus-
specific network activity. While discrete WM tasks
(e.g. two-alternative_forced_choice tasks) are typically
modeled through interconnected stimulus-selective
subpopulations, continuous tasks (e.g. the oculomotor
delayed response task) are encoded by a continuous,
ring-shaped network of tuned neurons that produce

localized bumps of sustained neural activity during the
mnemonic period.
Attractor stability as a general framework in
computational psychiatry
On the basis of these computational models, it has been
argued that psychiatric symptoms, and especially those
occurring in PSZ, may be more naturally mapped to
distortions of network dynamics rather than directly to
specific cellular or molecular mechanisms [9,15,16]. In
the context of WM, behaviorally relevant changes in
network dynamics are chiefly linked to the stability of
mnemonic attractor states, i.e. stable patterns of sus-
tained network activity that represent memoranda. In
this framework, different altered neurobiological
mechanisms convergently affect the stability of attractor
states (Figure 1b) and determine changes in network
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Figure 1

Proposed biophysical mechanisms of schizophrenia and their effect on attractor models of WM. (a) Four different quantifiable alterations in spatial WM in
PSZ (black: control simulations; blue: schizophrenia (schz) simulations), with an indication of biophysical network mechanisms that have been proposed
to underlie them in computational models (Box 1). In all panels, each line represents the parametric value (y-axis, e.g. angular location) of a single
memory, held in the format of a localized activity bump through the course of a single trial. Histograms represent the distribution of network readouts. [:
increase; Y: decrease; E/I: excitation-inhibition ratio, typically modeled through NMDAR hypofunction at pyramidal cells (E/I Y) or at inhibitory in-
terneurons (E/I [), but other receptor manipulations could similarly affect network dynamics (e.g. GABAAR dysfunction); STP: short-term plasticity; D1/
D2: relative D1-vs. D2-receptor contributions in the dopaminergic system. (b) Schematics of a possible energy landscape in continuous ring attractor
models. In these models, the deepening or shallowing of attractors is not the only factor that determines the effects of noise, which acts on an orthogonal
space (red manifold) [14]. Different angular positions on this low-dimensional manifold encode different stimulus values.

172 Computational Neuroscience
output consistent with disease symptoms (e.g. weaker
memories or higher distractibility, Box 1). Dynamical
systems models of WM alterations in PSZ have proposed
that the flattening of the attractor landscape would lead
to less stable memories, lower WM capacity, and

increased distractibility [15,17e19]. Detailed biophys-
ical models have shown how this change in network
dynamics, consistent with the symptoms of PSZ, can be
attained through different mechanistic alterations: from
synaptic receptor modulations that alter the excitation-
to-inhibition ratio (E/I ratio) of the network [20], over
complex neuromodulatory actions of the dopamine
system on synaptic and cellular channels [21], to the
effect of serotonergic receptors on the excitability of
network neurons [22] (Box 1 for more references). In
turn, a given alteration of network dynamics may be

mitigated by ‘treatment’ manipulations unrelated to the
initial mechanistic deficit.

The specific mapping of a given mechanistic alteration
(e.g. depleting NMDA receptors (NMDARs)) and the
resulting network dynamics effect (e.g. weaker attractor
states) may in some cases be difficult to establish. In
great part, this is due to our currently limited knowledge
about the neurophysiology of the implicated cortical
circuits and the still insufficient understanding of bio-
logical network models. We illustrate this point in the

following by focusing on the lower precision of spatial
WM reports in PSZ (Box 1) and how this may be
explained by a reduction in glutamatergic NMDAR ef-
ficacy or in short-term plasticity (STP), which, in turn,
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lead to reduced stability of attractors in the face of
random fluctuations. Current computational models
establish an ambiguous correspondence between this
behavioral phenomenon and NMDAR-mediated
changes in E/I ratio: depending on the modeler’s

choice among biologically plausible yet distinct model
architectures, either increases or decreases in cortical
E/I ratio could reduce attractor stability. We suggest that
further neurophysiological data is needed to clarify
this ambiguity.
E/I ratio has ambiguous effects on WM
stability, depending on network biophysics
Experimental evidence for an increased vs. decreased E/I
ratio in PSZ is ambiguous: while most evidence points to
an increased cortical E/I ratio in PSZ [23e25], possibly
caused by hypofunctional NMDARs in inhibitory in-
terneurons (i.e. cortical disinhibition) [12,26e28], other
studies have questioned the predominance of inhibitory
dysfunction [29] or provided evidence for reduced syn-
aptic spine densities in prefrontal pyramidal cells of PSZ

[30,31], suggesting deficits in recurrent excitatory cir-
cuitry in PFC. In support of the former hypothesis,
computational models that implement cortical disinhi-
bition in WM circuits can explain reduced WM precision
and increased distractibility [20,32,33] (but note similar
modeling work that instead explains altered decision-
making biases under ketamine with a deficit in cortical
excitation, rather than a deficit in inhibition [34]). In
Refs. [20,32,33], the behavioral effect of disinhibition
www.sciencedirect.com
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Box 1. Quantitative WM deficits associated with schizophrenia.

Precision. PSZ exhibits loss of WM precision [32,87–89], especially for long memory delays [88]. In computational models, this effect can be
accounted for by an increased E/I ratio due to NMDAR hypofunction at interneurons [20,32,33,88], decreased E/I ratio due to NMDAR hypo-
function at pyramidal neurons (Figure 2), dopaminergic imbalances [90], or the disruption of STP [33,74].

Distractibility.Memory reports of PSZ, relative to healthy controls, are substantially more biased toward distractors [32,88]. This effect has been
simulated in network models with increased E/I ratio [32], decreased D1/D2 ratio [21,91,92], and disrupted STP [74]. In addition to enhanced
biases toward distractors, PSZ also exhibit occasional substantial repulsion from nearby distractors [32,88]. This effect cannot be accounted for
by attractor models of WM [88], but it is still unclear if it is a delay-dependent effect or it reflects alterations in perceptual processing. Indeed,
experimental protocols that separate perceptual andWM origins (by including a 0-delay condition, for instance) when measuring distractibility [93]
and serial dependence [33,94–96] in healthy controls have suggested a perceptual origin of similar repulsive biases.

Capacity. Reduced WM capacity characterizes PSZ [97–100]. Computational models show that WM capacity may be determined by multiple
factors: interference between memories [93,101–103], memory forgetting [102–104], feature-binding errors or swap errors [105], and the
spontaneous generation of false memories [22]. Some of these factors have been reported to be affected in PSZ, like increased incidence of false
memories [106], but more studies are needed to better specify the origin of reduced WM capacity in PSZ. In line with all these different factors,
also multiple biological mechanisms may underlie WM capacity deficits in PSZ: reduced E/I ratio [37,102,104], dopaminergic imbalances [90],
reduced efficacy of top-down inputs [104], functional cortico-cortical disconnection [103], impaired oscillatory dynamics [107,108]. More so-
phisticated experiments and appropriate data analyses will be key in disentangling the different origins and mechanisms of reduced WM capacity
in PSZ.

Serial dependence or proactive interference. Tasks engaging WM induce across-trial interference in what is commonly called serial depen-
dence [109]. In contrast with the biases previously described in this box, serial dependence is reduced in PSZ [33] — intriguingly, this reduction
also characterizes autism [110]. Attractor models with STP have been proposed for serial dependence [75,76], and it has been shown that, in
these models, alterations in STP, but not in the E/I ratio of the attractor models, can account for reduced serial dependence in PSZ [33].
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occurs through stronger bumps of activity (bump attrac-
tors), i.e. higher network activation and deeper attractors.
The finding that deeper attractors are more sensitive to

noisy fluctuations, causing a reduction in WM precision,
is in contradiction with an intuitive understanding of
dynamics in mnemonic attractor landscapes, i.e. that
deeper attractors should be associated with more stable
memories. This apparent paradox is resolved by noting
that in continuous attractor models, random displace-
ments of a bump attractor occur along the dimension of
marginal stability (pink manifold in Figure 1B), rather
than through jumps from one attractor basin to the other,
as observed in discrete attractor models that are
commonly used to model alternative-choice WM tasks

[15]. Therefore, random bump-attractor displacements
underlying WM imprecision are not exclusively linked to
the depth or shape of the attractor but also depend rather
intricately on the amplitude and correlations of noise in
the network (see below). The fact that we do not know
how NMDAR blockade affects these elements both in
the brain and in biologically realistic computational
models is at the heart of our current inability to unam-
biguously evaluate the plausibility of the glutamatergic
explanation for a drop in WM precision in PSZ, as we
show in the following.

Mathematical analyses of neural field models show that
stronger bumps (wider and/or taller) diffuse more
slowly, but this can be offset by an increase in noise
amplitude or spatial correlation in the network [35,36].
The diffusivity (D) of the bump attractor is proportional
www.sciencedirect.com
to the noise strength (ε) and the spatial modulation of
noise correlations (DC) in input currents and depends
inversely on the squared amplitude (A2) of the

bump [36,37]:

Dw
ε$DC

A2
(1)

As a result, the specific effect of reduced NMDAR ef-
ficacy, or any other manipulation of a given biophysical
parameter, on WM diffusion will depend on how the
manipulation affects each of these three factors quan-
titatively. These effects, in turn, are determined by
biophysical details of the models, including the origin of
correlated noisy fluctuations during the delay period.
Only recently have some studies started to address the
generation of correlated variability in spatially extended
balanced networks [38e40], but more work is needed to

fully understand how it changes with specific manipu-
lations of biological parameters.

Specific bump attractor network implementations
illustrate the indecisiveness of current modeling ac-
counts of WM precision in PSZ. We simulated two
distinct biophysical bump attractor models, which differ
fundamentally in the way that noise is generated in the
network (github.com/comptelab/attractorSZ for imple-
mentation details). In Model 1, noise is injected from
external sources, and all-to-all coupling between neu-

rons generates strong noise correlations [33]. We
implemented two versions of Model 1: one that has
Current Opinion in Neurobiology 2021, 70:171–181
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been prominently used to simulate the effects of
NMDAR dysfunction on WM in PSZ [20,32] and a
second version that includes an additional STP mecha-
nism at recurrent excitatory synapses [33]. Model 2 also
includes STP, but its noise is generated internally by
virtue of sparse network connectivity that induces very
weak correlations between the noise experienced by
different neurons [41]. In Model 1, manipulations of

NMDAR efficacy affected bump shape but did not
change bump amplitude or mean neural variability
strongly (Figure 2a and b, middle, top) but in turn had
an important effect on the spatial modulation of spike-
count noise correlations (Figure 2c, middle, top). In
contrast, manipulations of NMDARs in Model 2 had a
strong impact on bump amplitude (Figure 2a, bottom)
and a more modest influence on noise amplitude
(Figure 2b, bottom) and the spatial modulation of noise
correlations (Figure 2c, bottom). Repeated simulations
show that corresponding perturbations in NMDARs

(either on excitatory cells or on inhibitory cells) in these
two biophysical models led to opposing predictions for
bump diffusion. Disinhibition (E/IY) led to faster
diffusion in Model 1 (Figure 2d, middle, top, similar to
previous models in Refs. [20,32]) but resulted in slower
diffusion in Model 2 (Figure 2d, bottom). Importantly,
we could predict qualitative differences in diffusivity as
dictated by Eq. (1) [36] (Figure 2d, dotted lines) from
bump amplitude, mean neural variability, and noise
correlation estimations from simulated data (Figure 2 a-
c). To be noted here is that these estimations were

calculated from neuronal spiking activity rather than
input currents as used in the mathematical derivation of
Eq. (1) [36,37]. This facilitates the comparison of these
results with experimental data. The results of our sim-
ulations indicate that the direction in which alterations
of the E/I ratio through NMDAR hypofunction affect
WM precision will depend on the biophysical details of
the WM-maintaining circuit and on how these mecha-
nisms affect bump shape, neural variability, and the
spatial modulation of noise correlations. Which biolog-
ical parameters determine how the bump shape and
noise characteristics respond to perturbations is

currently unclear, but candidate factors that distinguish
the two models include sparseness of connectivity,
strength of external noisy inputs, saturation of
NMDARs, conductance-based synapses, and oscilla-
tory activity.
Insufficient and inconsistent experimental
constraints on biologically plausible
computational models
A detailed understanding of how a diversity of biologi-
cally plausible network models (including the models
highlighted above) react to mechanistic manipulations
can be exploited to identify the regime in which cortical
circuits operate and motivate neurophysiological and

pharmacological experiments in behaving animals.
Current Opinion in Neurobiology 2021, 70:171–181
Current evidence from combined pharmacology and
electrophysiology underscores the insufficiency of
assuming a straightforward relation between E/I ratio
and WM precision: A recent study that raised the E/I
ratio in monkeys through cholinergic neuromodulation
by microstimulation of nucleus basalis shows that WM
precision increases and tuning curves in the prefrontal
cortex (PFC) become wider [42], in agreement with the

impact of bump attractor shape on WM diffusivity ac-
cording to Eq. (1). However, a recent study under ke-
tamine showed a similar reduction in delay-period
tuning in PFC, but this time associated with decreased
precision [43], which suggests that manipulation of
NMDARs may have an important impact on noise pa-
rameters [44,45] that compensate for the influence of
bump shape on diffusivity (as for Model 1 in Figure 2).
The opposing effects of E/I ratio on WM performance in
Refs. [42,43] suggest that the convenient interpretation
of functional alterations as the effect of modulations in

E/I ratio via distinct convergent mechanistic manipula-
tions may be an inadequate simplification of the
mechanistic basis of cognitive deficits of PSZ. Future
experiments with neuromodulators or receptor antago-
nists should explicitly assess the impact on bump shape
and correlated noise during delay activity, together with
WM precision, in order to clarify the validity of the E/I
ratio as a useful construct for the interpretation of
these data.

A useful approach for understanding the effects of
NMDAR hypofunction in PSZ is the pharmacological
administration of NMDAR antagonists [46]. Mimicking
effects in PSZ, NMDAR antagonists cause reduced ac-
curacy in WM tasks [10,25,43,47], possibly reflecting a
drop in WM precision. Despite the dominant view that
systemic ketamine generally raises the E/I ratio and
disinhibits cortical networks [11,26,27,48,49], more
specific evidence indicates that in the context of WM
tasks, prefrontal delay activity is often suppressed in PSZ
[50,51] and under systemic NMDAR blockade

[10,43,47,52,53] (but see Ref. [44]). Yet, it has to be
noted that some of the most compelling evidence for
NMDAR-blockade-related suppression of delay activity
in PFC comes from iontophoresis studies. Importantly,
iontophoresis only affects receptors in the very near
neighborhood of the electrode tip [10,54], so that its
suppressive effects cannot be unequivocally associated
with the network effects of systemic administration, as
illustrated in simulations in Figure 3. Indeed, when
NMDAR antagonism is more effective on interneuron
receptors than on pyramidal neuron receptors, ionto-

phoresis vs. systemic administration simulations yield
paradoxical results: iontophoresis suppresses (Figure 3c
and d), whereas whole-network application enhances
delay activity (Figure 3b). Electrophysiology studies in
monkeys performing aWMtask under systemicNMDAR
antagonists have mostly found decreased [10,43,52] but
www.sciencedirect.com
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Figure 2

Different biophysical network models yield opposing predictions on how the E/I ratio affects WM precision. We tested two different biophysical
models of spatial WM. Model 1 (upper two rows [20,33]) has been predominantly used to investigate effects of NMDAR hypofunction on WM and is
characterized by all-to-all connectivity, conductance-based synapses, saturating NMDARs, noisy inputs [33], and may include STP in excitatory synapses
(middle row, ref. [33]) or not (top row, ref. [20]). Model 2 (lower panel row, ref. [41]) is an alternative model: sparse connectivity, current-based synapses,
nonsaturating NMDARs, internal generation of noise [41]. E/I ratio was modulated by reducing the efficacy of NMDARs on excitatory neurons (E/EY,
resulting in reduced E/I ratio (E/IY)) or on inhibitory neurons (E/IY, causing E/I[). The two network models responded very differently to these ma-
nipulations: with little effect on bump amplitude and strong impact on noise parameters (model 1) or with strong impact on bump shape but minor effects
on noise parameters (model 2). As a result, the diffusivity of memory encoding increased with the E/I ratio for model 1 but decreased with the E/I ratio for
model 2, in agreement with mathematical derivations of how diffusivity depends on bump strength (A), noise amplitude (ε), and the modulation of the
spatial correlation of noisy fluctuations (DC) (Eq. (1) [36]). We estimated the parameters A, ε and DC from neuron spike counts (the mathematical formula
is derived for input currents) through the range of spike counts in the bump, the Fano factor of spike count across trials, and the spatial pattern of spike-
count noise correlations in the bump, respectively. These estimates led to predicted red and blue slopes (dotted straight lines), where intercepts and gray
slopes were independently fitted to simulation data. (a) population activity during the delay for simulations with cue stimulus at 180� (A: amplitude of tuning
in activity); (b) Fano factor (variance over mean across trials) of spike counts of excitatory neurons (100 ms window, 1 s into the delay) (ε: mean Fano
factor across neurons); (c) spatial correlation of fluctuations around the mean for spike-counts in the delay (100 ms window, 1 s into the delay) (DC:
amplitude of tuning in noise correlations). Note the large quantitative difference between the two models due to dense versus sparse connectivity [40]. Of
significance for bump diffusivity is the modulation of the spatial correlation DC; (d) memory diffusion computed as the time-by-time variance of population
vector decoding of bump centers (250 ms windows) for 1250 different simulations in 3 s long delay periods. For model 2, systematic drifts [41] were
removed by subtracting the mean decoder trajectory of 25 simulations with identical cue stimulus, and for 50 different cue stimuli, before computing the
variance. For visualization purposes, high heterogeneity in neuron rates in model 2 was smoothed with a Gaussian kernel in a-c. Details of network
simulations and analyses are available at https://github.com/comptelab/attractorSZ.
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also increased [44] prefrontal mnemonic activity. Such
experiments are critical in clarifying the impact of sys-
temic NMDAR antagonists on WM representations and

properly constrain computational models (Figure 2).

Another factor that complicates the understanding of the
effects of NMDAR hypofunction in PSZ on WM is the
distributed nature of WM activity across the cortex.
Based on currently available evidence, NMDAR antago-
nists would suppress prefrontal WM-related activity
[10,43,47,52,53]. Recent evidence, however, also shows
www.sciencedirect.com
that WM deficits of PSZ may depend particularly on ac-
tivity in parietal circuits [55]. Interestingly, NMDAR
antagonists affect mnemonic activity in prefrontal and

parietal circuits inversely [52], suggesting a possible
enhancement of parietal WM-related activity. This
contrast in the reaction of these two circuits to NMDAR
manipulation is supported by marked differences in
cellular physiological properties [56], which could
impose different correlated noise structures (Figure 2).
Which of the two areas is more directly linked to WM
behavioral output? There is evidence that prefrontal
Current Opinion in Neurobiology 2021, 70:171–181
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mnemonic activity reflects the memory diffusion that
causes WM imprecisions [57,58], suggesting a closer link
of this area to WM precision. However, it is not known if
this relationship also exists for activity fluctuations in the
parietal cortex and which of the two areas is more closely
associated with the activity drifts that drive WM impre-
cisions. As a result, specifying the dominant role of pre-
frontal or parietal circuits in maintaining accurate spatial

WM signals through the mnemonic delay appears here as
another key piece of information to constrain currently
indecisive computational models (Figure 2).

Beyond E/I ratio: plasticity deficits in
schizophrenia and their effects on WM
On the basis of insufficiently constrained computational
models, it is currently unclear how regional imbalances in
cortical E/I ratio caused by hypofunctional NMDARs can
explain WM precision deficits in PSZ. However, mech-
anisms beyond a shift in cortical E/I ratio could be
affected by biological alterations in PSZ, some of which
might be mapped on WM deficits more unequivocally

than the concept of cortical E/I ratio. Here, we consider a
synaptic plasticitymechanism that explains reductions in
Figure 3

Dissociated effects of systemic vs. local application of NMDAR antagon
blockade affects receptors more strongly in excitatory neurons than in inhibito
reduced (a) or enhanced (b) for both excitatory (top graphs, blue) or inhibitory
antagonists invariably reduces delay-period activity in the affected neurons ((
reflected in the activity of nonmodified neurons, which are usually not recorde
neuron after the presentation of a preferred stimulus; dashed lines, the activity
are available at https://github.com/comptelab/attractorSZ.
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WM precision in both attractor models considered in
Figure 2. Schizophrenia has been related to dysfunctions
in synaptic plasticity [59e62], and perceptual and
neurocognitive alterations in the disease have been
attributed to alterations in long- and short-termplasticity
(STP) [63e65], also in relation to NMDAR hypo-
function [66,67]. Cognitive effects of disrupted STP on
WMhave been assessed in geneticmousemodels [68,69]

and computational models of schizophrenia [70], where
reductions in STP lead to reduced WM performance
[68,69]. Moreover, pharmacological inhibition of
NMDARs through systemic ketamine administration
decreases spike-time synchrony in delay-active cells in
PFCduringWM[71], which could be interpreted in light
of reduced prefrontal STP [72]. Finally, computational
modeling links a novel behavioral pattern of reduced
serial dependence in PSZ and anti-NMDARencephalitis
to dysfunctional STP, while prefrontal E/I ratio alone
cannot account for these behavioral findings [33].

The predictions for the effect of STP on WM are clear:
when implemented in bump attractor networks, STP
stabilizes bump attractors against noise so that memory
ists in a computational WM model. Depending on whether NMDAR
ry neurons, or vice versa, delay-period activity in network simulations gets
(bottom graphs, red) neurons. In contrast, the local application of NMDAR
c) top, (d) bottom) while global network dynamics remain unaltered, as
d during iontophoresis ((c) bottom, (d) top). Solid lines, the activity of one
of one neuron after a nonpreferred stimulus. Details of network simulations

www.sciencedirect.com
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precision is better maintained through delay periods
[41,73,74], and bumps are more robust against inter-
vening distractors [74]. Further, STP induces serial
dependence between successive WM trials because of
the enduring synaptic trace that influences subsequent
bump attractor memories [33,72,75,76]. STP has these
effects irrespectively of the specific network imple-
mentation of the bump attractor, and as a result, its

deficit leads unambiguously to WM precision loss
(Figure 4), increased distractibility [74], and reduced
serial dependence [33], all characteristic WM alterations
in PSZ (Box 1). Interestingly, this mechanism contrib-
utes weakly to delay-period activity, so its disruption
could occur independently and in addition to biological
alterations that impact the E/I ratio (Figure 4). For
instance, assuming network disinhibition in the circuit
responsible for maintaining WM (possibly parietal
cortex),Model 2 in Figure 2would not be able to explain a
reduction in WM precision through the alteration in E/I

ratio, but it could if in addition, it had reduced STP
(Figure 4). Conversely, network inhibition as currently
considered for prefrontalWMcircuits in PSZwouldmake
Model 1 in Figure 2 unable to account for WM precision
loss unless STP reductions are additionally considered
(not shown). In fact, it is not unlikely that changes in
neuromodulatory or neurotransmitter systems would
affect both E/I ratio and synaptic plasticity, with a po-
tential interdependence of the two phenomena [77].
These scenarios may reconcile possible inconsistencies
between experimental evidence and computational
Figure 4

In network models, reductions of STP cause WM precision loss, also
with concurrent E/I ratio alterations that would increase WM preci-
sion on their own. Simulations correspond to network Model 2 of
Figure 2. Control and E/IY conditions are shared with Figure 2, and are
compared here with simulations with additional reduction in STP (STPY
and E/IY + STPY, respectively). (a) Average delay-period activity of
neurons in the network in each condition. Notice that STP reduction
causes minimal changes in delay rates in the simulations, indicating quite
intact E/I ratio in the delay period after STP reduction. (b) Memory diffu-
sion patterns for each condition (see Figure 2d). Notice the strong impact
of STP reduction on memory diffusion, to the point that it turns reduced
diffusion of E/IY into enhanced diffusion (E/IY + STPY) compared to
control diffusion (gray).

www.sciencedirect.com
models of schizophrenia when interpretations only
consider imbalances in the E/I ratio (Figure 2).
Conclusions
In this review, we argue that although contemporary
network models of schizophrenia capture WM deficits
observed in PSZ, the space of possible modeling solu-
tions is not sufficiently constrained by experimental
data. By focusing on the effect of increased vs. decreased
E/I ratio (E/IY vs. E/EY) on WM precision, we
provide two general insights. First, these opposed ma-
nipulations can produce the same behavioral pattern in
different alternative, plausible biological network

models (Figure 2). As a result, the interpretations of
mechanistic models in computational psychiatry will
remain limited in the absence of properly constraining
experimental data. Importantly, in-depth analysis of
computational models can guide the design of critically
informative experiments. Second, we argue that
grouping different perturbations under the convenient
umbrella of the E/I ratio can be inadequate in some
conditions, as different pharmacological perturbations
can affect the E/I ratio similarly but have opposite ef-
fects on behavior [42,43].

In the specific case of how manipulations of the E/I
ratio affect WM precision, we point out four important
neurophysiological unknowns: The shape of activity
bumps during WM delays, the specific properties of
correlated noise in the circuit, the specific brain area
responsible for maintaining accurate WM representa-
tions, and the possible joint alteration of NMDARs and
STP. First, it appears critical to determine the fine-
grained effects of pharmacological interventions on
neural tuning. Measuring tuning properties together
with behavioral effects will be necessary to inform

model selection. Second, spatial profiles of noise cor-
relations may be critical for understanding the effect of
disease mechanisms on WM precision, and potentially
other WM phenomena not tested in this paper. Third,
these neurophysiological characterizations should be
done in the circuits most directly associated with
maintaining precise WM, as current evidence
comparing prefrontal and parietal cortices shows that
they respond very differently to NMDAR antagonists.
Pharmacological experiments in vivo will be key to
inform computational models of schizophrenia by sys-

tematically measuring these fine-grained neurophysio-
logical effects directly in the area responsible for WM
maintenance. Finally, in vitro experiments should
determine if NMDAR antagonists also impact slower
mechanisms (e.g. different types of STP [78]) in WM-
related cortical networks, as computational models
unequivocally assign a memory-stabilizing role to such
slower mechanisms, and this could interact with in-
terpretations of WM precision deficits in
PSZ (Figure 4).
Current Opinion in Neurobiology 2021, 70:171–181

www.sciencedirect.com/science/journal/09594388


178 Computational Neuroscience
There is also pending work on the computational and
theoretical front. Shared correlations, in addition to the
commonly considered bump attractor shape [20],
impact WM precision [36], and only recently have
studies started to address how these shared correlations
are generated in recurrently coupled networks [39,40].
Theoretical efforts should continue and also extend to
bump attractors, eventually aiming to understand the

role of biophysical mechanisms that have been impli-
cated in schizophrenia, such as NMDARs, dopamine, or
STP. Importantly, insights gained about how biophysical
manipulations impact bump tuning and noise properties
in WM are expected to generalize to other behavioral
contexts governed by continuous attractor dynamics,
such as tactile WM [79] or the thalamic head direction
system in the absence of input [14]. Furthermore, PSZ
show abnormal behavioral patterns in other cognitive
tasks that require context-dependent cognitive control
and have been linked to altered E/I ratio [80e82].

Developing biophysical computational models would
allow the mechanistic understanding of these deficits
through the consistent integration of computational and
neurophysiology data, as attempted here for spatial WM
precision. Recurrent neural networks (RNNs) trained
with backpropagation are a possible tool to address more
complex tasks that are difficult to model in a bottom-up
fashion [83]. Training RNNs to replicate behavioral
patterns and neural dynamics in PSZ, or pharmacological
models of schizophrenia, could untie different contri-
butions of structured connectivity (Ehrlich et al. ab-

stract 1-052, Computational and Systems Neuroscience
(Cosyne) Conference, February 2021) [84,85] and STP
[86], which appear as the key ingredients to understand
WM deficits, and perhaps cognition more broadly,
in PSZ.

Finally, we want to acknowledge the contribution of
computational models of disease to the understanding
of neuropsychiatric disorders. While pointing out in-
adequacies of current models to provide a consistent
account of cognitive deficits in PSZ, we also showed
how the analysis of these models allows a more precise

framing of the research questions to advance
concertedly toward a mechanistic understanding of
these diseases. This underscores the rigor that math-
ematical modeling adds to the field of psychiatry, and
we hope that it encourages clinical researchers to
adopt these models as a formal framework to under-
stand the disease.
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